High-current Srf Cavity Design

نویسندگان

  • D. Meidlinger
  • T. L. Grimm
  • W. Hartung
چکیده

For high current applications, it is desirable for the cavity shape to have a low longitudinal loss factor and to have a high beam-breakup threshold current. This paper briefly describes three different cavities designed for this purpose: a six-cell elliptical cavity for particles traveling at the speed of light, a two-cell elliptical cavity for subluminal particle speeds, and a single cell cavity which uses the TM012 mode for acceleration. SUPERFISH simulations predict the peak fields in both of the elliptical cavities will not exceed the TESLA values by more than 10% but both will have 28.7% larger apertures. The elliptical designs assume the bunch frequency equals the accelerating mode frequency. The beam pipe radius is chosen so that the cutoff frequency is less than twice that of the accelerating mode. Hence all of the monopole and dipole higher-order modes (HOMs) that can be driven by the beam have low loaded Q values. This simplifies the problem of HOM damping. The TM012 cavity is predicted to have much higher peak fields than a π-mode elliptical cavity, but offers potential advantages from its simplified shape; it is essentially a circular waveguide with curved end plates. This basic shape results in easier fabrication and simplified tuning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BERLinPro 7-CELL SRF CAVITY OPTIMIZATION AND HOMs EXTERNAL QUALITY FACTORS ESTIMATION

The main scope of this work is the optimization of the Superconducting Radio Frequency (SRF) accelerating cavity design for the Berlin Energy Recovery Linac Project (BERLinPro). BERLinPro shall serve as a demonstrator for 100-mA-class Energy Recovery Liniac (ERL) with CW LINAC technology. High-current operation requires an effective damping of Higher-OrderModes (HOMs) of the 1.3 GHz main-linac ...

متن کامل

Beam Dynamics Studies for SRF Photoinjectors

The SRF photoinjector combines the advantages of photo-assisted production of high brightness, short electron pulses and high gradient, low-loss continuous wave (CW) operation of a superconducting radiofrequency (SRF) cavity. The paper discusses beam dynamics considerations for ERL class applications of SRF photoinjectors. One case of particular interest is the design of the SRF photoinjector f...

متن کامل

PROCESSING AND TESTING OF THE SRF PHOTOINJECTOR CAVITY FOR bERLinPro

The bERLinPro project is a compact, c.w. superconducting RF (SRF) energy recovery linac (ERL) that is being built to develop the accelerator physics and technology required to operate the next generation of high current ERLs. The machine is designed to produce a 50 MeV 100 mA beam, with better than 1 mm-mrad emittance. The electron source for the ERL will be a SRF photoinjector equipped with a ...

متن کامل

Status of the Superconducting Rf Photo-injector Development*

A status report of the superconducting RF photo electron injector development at Forschungszentrum DresdenRossendorf (FZD) is given. The SRF gun project is a collaboration of BESSY, DESY, MBI and FZD and aims at the installation of a high average current CW photo injector at the ELBE superconducting electron linac. Main design parameters of the SRF gun are an electron energy of 9.5 MeV, a maxim...

متن کامل

Rf Input Power Couplers for High Current Srf Applications

High current SRF technology is being explored in present day accelerator science. The bERLinPro project is presently being built at HZB to address the challenges involved in high current SRF machines with the goal of generating and accelerating a 100 mA electron beam to 50 MeV in continuous wave (cw) mode at 1.3 GHz. One of the main challenges in this project is that of handling the high input ...

متن کامل

Berlinpro Booster Cavity Design, Fabrication and Test Plans

The bERLinPro project, a 100 mA, 50 MeV superconducting RF (SRF) Energy Recovery Linac (ERL) is under construction at Helmholtz-Zentrum Berlin for the purpose of studying the technical challenges and physics of operating a high current, c.w., 1.3 GHz ERL. This machine will utilize three unique SRF cryomodules for the injector, booster and linac module respectively. The booster cryomodule will c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005